

Temporary Technical data sheet

(please consider technical data as indicative)

100 Mixing ratio by weight 33

Applications

Repairing of structural capacity of pipelines without extensive excavation, through the use of main liners.

Processing

Manual or mechanical mixing of the two components, by avoiding any further friction that can lead to the warming of the mixture. Cast the system inside the liner and distribute it evenly through the calendaring process of rollers.

Product information

Two components unfilled epoxy system, medium viscosity, highly reactive even at room temperature, particularly suitable for cold places.

Products characteristics	Resin	Hardener	
Colour	Colourless	Blue	
Viscosity at 25°C (mPas)	2.600 - 3.600	700 – 800	
Density at 25°C (g/ml)	1,08 – 1,12	0,98 – 1,02	
Mixing ratio by volume (ml)	100	38	

System typical characteristics

Pot life (100 ml, 40 mm, 25°C)	min	8 – 10
Exothermal peak (100 ml, 40 mm, 25°C)	°C	218 – 222

CURED SYSTEM TYPICAL PROPERTIES

(24 h standard curing at room temperature + 15h 60 °C)

Final Colour			Blue
Hardness Shore		D/15	82 – 86
Transition Glass		°C	82 - 87
Maximum Transition Glass (p.c. 2h 100°C)		°C	95 – 99
Elastic bending modulus	ASTM D 790	MN/m2	3.200 – 3.500
Bending Strength	ASTM D 790	MN/m2	120 – 125
Tear Strength	ASTM D 638	MN/m2	82 – 87
Elongation at break	ASTM D 638	%	4,5 – 5,0
Under compression Strength	ASTM D 695	MN/m2	85 – 90

Instructions for a proper use

Verify and, if necessary, homogenize components before use.

Mix the two components (resin and hardener) in the proper mixing ratio avoiding air trapping until obtaining a homogeneous mixture, and then apply.

Post-curing

Post-curing is always suggested to stabilize the cured handwork to reach the best mechanical and chemical properties. Post-curing becomes necessary when the handwork works at elevated temperatures.

Post-cure the handwork increasing temperature avoiding thermal gradients over 10°C/hour. Keep the temperature for the time given in the table and then let it cool slowly. For big size components the increase of temperature must be slower and progressive in order to avoid thermal decompensation between external surface and core. In the case of thin layer applications and composites post cure on the jig.

Storage and handling precautions

Epoxy resins and hardeners can be stored over two years in the original sealed package in a cool and dry place. Hardeners are moisture sensitive.

Refer to the product health and safety data sheet.

First emission date: 17th May 2019

Revision n. 2 of: 11th September 2019

 $RT = room temperature (23\pm2^{\circ}C)$

Conversion units: 1 mPas = 1 cPs $1 \text{MN/m}^2 = 10 \text{ kg/cm}^2 = 1 \text{ MPa}$